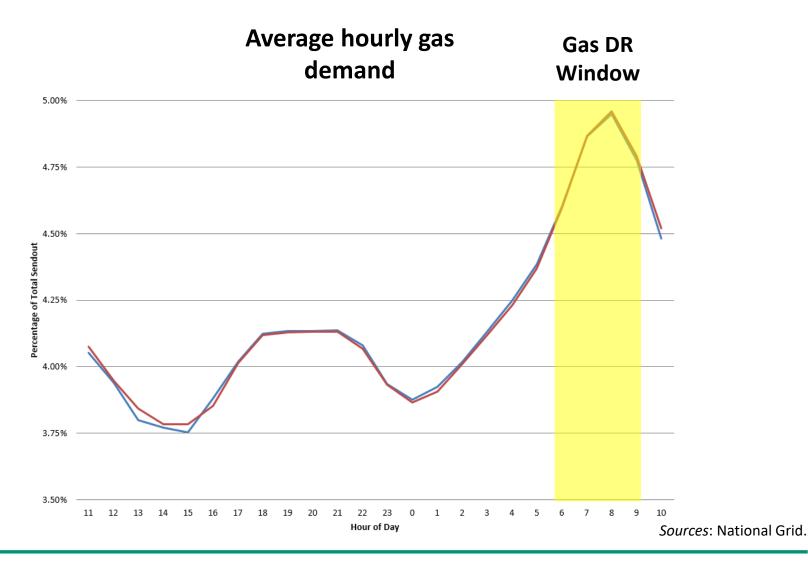
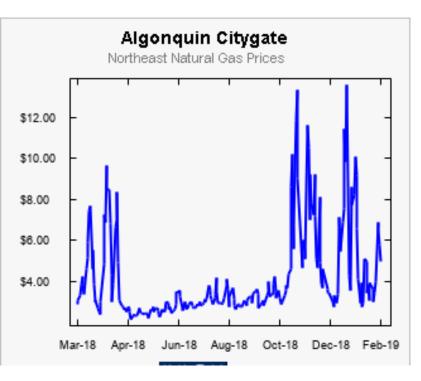

Gas Demand Response: The Next Frontier

Kurt Roth, Ph.D.

AEE East Energy Conference Boston, MA March 21, 2019


Gas DR seeks to address gas distribution system constraints.


Sources: Sprial Weld (2019), Vero Beach Magazine (2014).

Gas DR seeks to reduce peak gas demand.

These gas DR programs are not designed to:

- Address gas transmission constraints
- Address spikes in daily gas prices
- Last for 24+ hours

Sources: Natural Gas Intelligence (2019), Slusarczyk (2013),

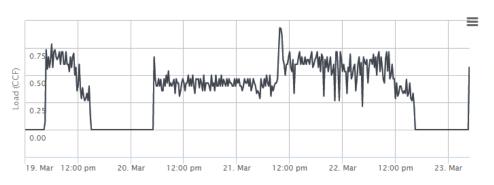
Gas DR Program Design: Two basic approaches

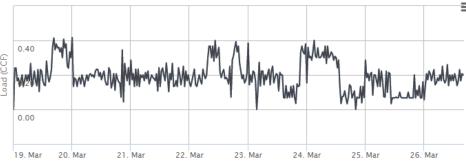
- Direct Load Control (DLC): Gas utility controls the operation of gas-fired devices, capacity commitment based on nameplate data
- Fixed Service Level (FSL): Gas customer manages their gas consumption to achieve a target gas consumption level relative to a pre-determined baseline during events

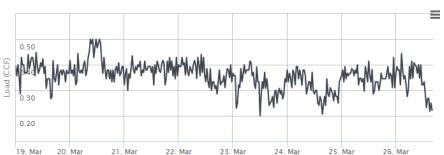
Sources: National Grid, Superior Boiler.

The Pros and Cons of DLC and FSL designs.

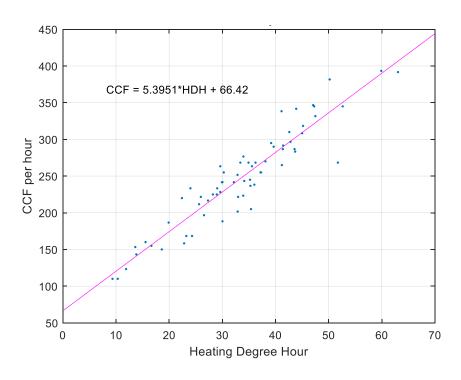
Attribute	DLC – New York	FSL - Massachusetts
Customer Flexibility	Customer chooses equipment controlled, but cannot override DLC.	Customer decides how to achieve FSL, can opt out of a limited number of events.
Performance Risk	Controlled devices do not consume gas during events – but other devices can.	- Customers may not achieveFSL targets.- Multiple possible baselines.
Infrastructure Required?	Device-level control and actuation (\$2.5-5k).Communications can be a challenge	 High-resolution gas metering (≤15 minutes). Existing automation facilitates achieving FSL.
Baseline Required?	None.	Required for performance assessment.

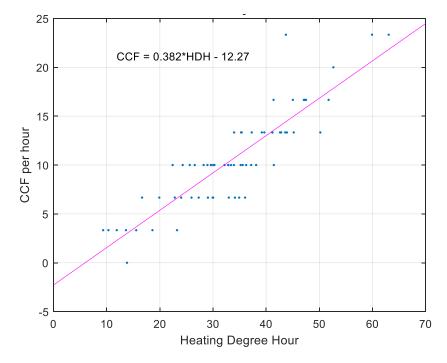

Gas DR program parameters


- When is gas DR needed? Coldest days of the year.
- How many events are called? Typically 3 to 6 expected.
- How long does an event last? Three hours, from 6-9AM
- How are customer payments determined?
 - NY: Based on nameplate under DLC
 - Massachusetts: Based on actual gas curtailment relative to baseline
- What is compensation for gas DR:
 - NY: Customers bid, average ~\$30/therm for equipment curtailed
 - Massachusetts: \$40/therm curtailed per event (avg. over 3h period)
- Facility-level gas metering infrastructure?
 - NY: KYZ pulse counter installed, 1-minute data uploaded every 5 mins.
 - Massachusetts: Existing gas metering provided 15-minute data

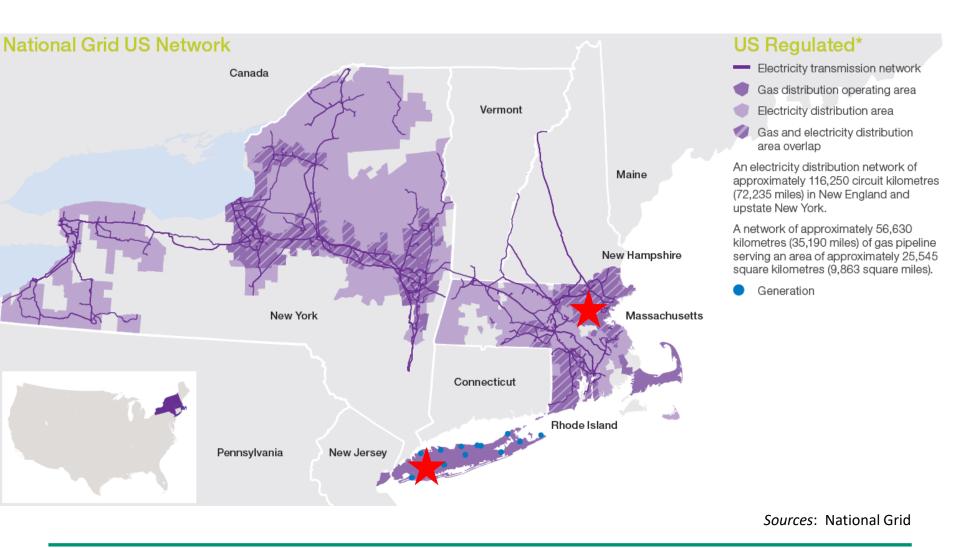

© Fraunhofer USA 2019

Customers' gas consumption profiles vary appreciably, affecting gas DR potentials.


Sources: National Grid.


FSL Baseline calculation

- Considered multiple approaches Used Heating Degree Hour (HDH)
 - Uses hourly gas consumption from 6-9AM on non-event, non-vacation weekdays


$$HDH = 65^{\circ}F - T_{out}$$

9

Two Pilots, Two States.

Fraunhofer

© Fraunhofer USA 2019

Recruiting: We approached the largest gas consumers in National Grid's gas service territories.

What we learned:

- Customers are not familiar with the concept of gas DR
 - Many did not understand the concept
 - Some think they have been offered gas DR before: Electric DR? Third-party energy supplier?
- Commercial/institutional customers most likely to participate
- Industrial customers: Very reluctant to interrupt major process loads
- Most customers do not have the requisite infrastructure installed for gas metering or DLC
- Many customers had a negative reaction to DLC (particularly in Mass.)
- Poor experience with electric DR colored perception of gas DR

Facility Manager Gas DR Survey: Findings

- Opt-out very important to most, many had a negative reaction to DLC
 - Willing to accept lower compensation to maintain control
- Very concerned about disrupting operations / productivity risk relative to compensation levels
- Implementation complexity a concern for many
 - Many valued technical support for identifying gas DR strategies
 - Fuel switching takes time
- Wary of time-varying (e.g., hourly) gas rates not sure if they could effectively manage gas demand
- Typically want 48-72 hours notification for events
- Poor experience with electric DR colored perception of gas DR

© Fraunhofer USA 2019

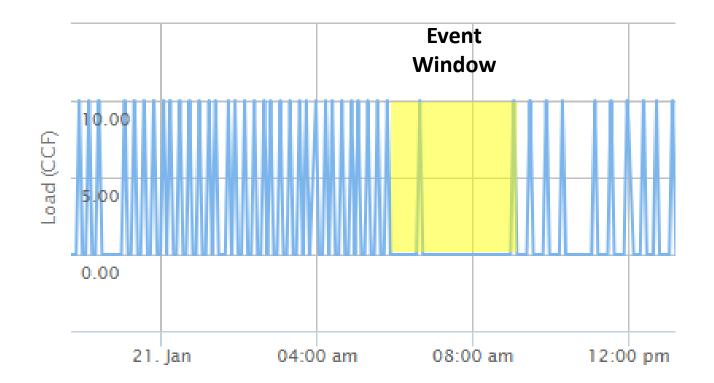
Recruiting Findings

New York:

- National Grid sent mailers to ~650 large gas customers
- In-person visits by National Grid with 30-35 large customers, crucial to explain and sell concept, identify major gas DR opportunities
- 16 participants recruited for pilot
 - Between Y1 and Y2, one participant added, one dropped

Recruiting Findings

Massachusetts:

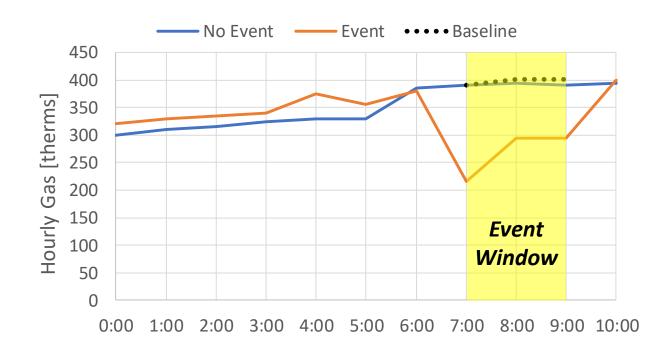

- Fraunhofer outreach to ~60 very large gas customers, using National Grid contact information
- Response Rate: ~35%
- Follow up calls: ~15% interest in revenue, ~real-time gas data
- On-site meetings: ~10%
- One very large customer recruited (university with multiple accounts)

14

DLC was a major concern for just about all interested customers

New York Results

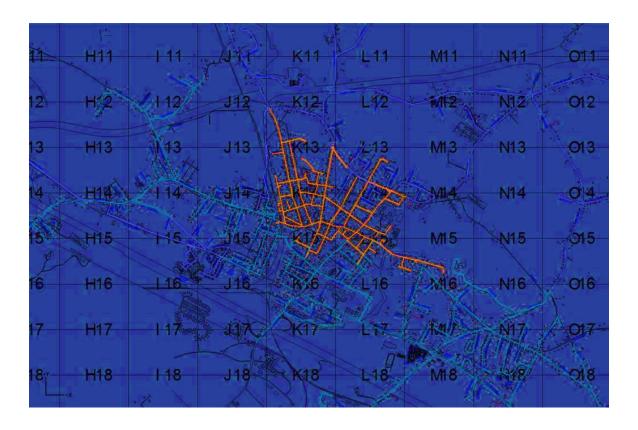
- Primarily large boilers controlled, using electric interrupts
- Reduction in account-level gas consumption: 63%/50% (mean/median)


Results: A university consistently hit its FSL targets for four facilities.

FSL Baseline: 420 ccf

Average During Event: 270 ccf

Approaches:


- Pre-heat spaces
- Decrease T_{set}
- Decrease plantH₂O temperature
- Suspend outdoor air provision

© Fraunhofer USA 2019

National Grid modeled how gas demand reductions affected distribution system pressures in locations where reinforcement projects were completed.

Sources: CHI Engineering.

Our preliminary assessment shows that the impact of Gas DR varies appreciably among projects.

Normalized Pressure to Post-Reinforcement Pressures vs. Demand Reduction %

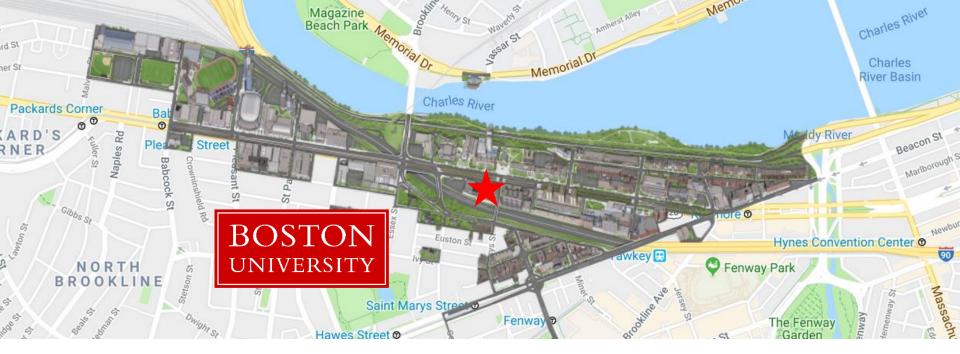
Project	0%	10%	15%	20%	25%	30%	Equivalent Years of Gas DR
1	0.91	0.96	0.98	1.00	1.00	1.02	3
2	0.79	0.83	0.83	0.85	0.85	0.85	Never
3	0.89	0.93	0.93	0.96	0.98	1.00	5
4	0.60	0.72	0.86	0.93	0.99	1.05	36
5	0.86	0.88	0.90	0.90	0.92	0.92	Never

Equivalent Years of Gas DR = (Reinforcement Cost)/(Estimated Yearly Gas DR Incentive)

Conclusions

- Field tests show that facilities can achieve their target gas reductions
- System modeling shows that gas DR has the potential to defer some system reinforcement investments
- Customer recruitment can be challenging
 - New concept for customers high touch and technical support needed
 - Customers generally prefer FSL versus DLC
 - Leverage relationships from existing EE programs
- Ongoing National Grid pilots in New York and Rhode Island

Outstanding Questions


- What portion of gas system reinforcement projects could gas DR potentially displace?
- How does gas DR participation vary with incentive level?
- How does gas DR potential vary among customer types and gas end uses?
- How does gas DR participation vary by customer type?
- Would hourly natural gas prices achieve a similar effect?
- What baseline approaches make sense for different customer types?

20

Acknowledgements

- Michael Zeifman, Fraunhofer (Principal Investigator)
- Owen Brady, National Grid (Led National Grid Gas DR program development)
- Stephen Caliri, National Grid

Contact

Kurt Roth, PhD

kroth@fraunhofer.org

+ 1 617 353-1895

15 Saint Mary's Street

Brookline, MA 02446

