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ABSTRACT 
 

Opt-in energy efficiency and demand response programs require consumers to enroll. 
Conventionally, households are recruited to participate in these residential programs without regard to 
the consumers’ propensity to enroll in such programs. Since the fraction of successfully recruited 
households is usually low, effectiveness of these recruitment efforts is questionable. Moreover, 
recruitment within a sub-population that is likely to enroll could be made more effective by targeted 
marketing.  

The state-of-the-art methodology method for household enrollment prediction involves running 
measurable household characteristics (e.g., age, household income, education, presence of children, 
average energy bill) through a mathematical tool, (e.g., a multivariate logistic regression) that connects 
these predictor variables with the probability to enroll. The estimation of the regression coefficients (i.e., 
training) typically requires data on about a thousand households that enrolled and another thousand 
households that did not enroll in previous program(s). Unfortunately, the prediction accuracy of this 
method is just slightly better than 50%, and the required household data are not freely available to 
utilities/ program contractors. 

This paper describes a new method to predict household propensity to enroll in opt-in behavioral 
programs. The only data needed to complete this analysis is 12 months’ of hourly electricity 
consumption data from households’ smart meters. The method uses advanced machine learning 
algorithms to reach an unprecedented prediction accuracy of about 90%. The results are based on our 
study of a West Coast behavior-based residential program. 
 
Introduction 
 

Behavior-based energy efficiency programs are designed to affect consumer behaviors to achieve 
energy and/or peak demand savings [DOE 2012]. Naturally, customers tend to self-select into the 
program; those that voluntary enroll in a behavior-based program are most likely to benefit from it 
[DOE 2012]. Examples of the opt-in programs are Wisconsin PowerCost Monitor in-home energy 
display [DOE 2012] and time-of-use residential electricity rate [DOE 2013] programs.  

In the US, the enrollment rate of such opt-in programs, defined as the number of recruited 
customers divided by the number of solicited customers, is often a small fraction. For example, in a 
recent DOE study of time-based residential electricity rate programs, the opt-in enrollment rates ranged 
from 5% to 28% with the average enrollment rate being 11% [DOE 2013]. These numbers indicate there 
is potential of increasing the effectiveness of recruitment efforts.. 

Evaluation of behavioral-based programs usually involves a control group of households that do 
not receive treatment. Such a control group needs to be as similar to the treatment group as possible. 
Unfortunately, experimental design in which this similarity is preserved by random assigning of the 
recruited households into a treatment group and a control group (Randomized Controlled Trials - RCT) 
is not always possible and/or suitable.  

One popular non-experimental method of constructing a control group is matching energy 
consumption (e.g., pre-treatment energy bills) and other available observable characteristics (e.g., 



income level or household square footage) of the enrolled households and the candidate nearby 
households that did not have a chance to enroll [Allcott 2011]. This method can create a non-
experimental control group with the observable characteristics being very similar to those of the 
treatment group, yet it is known to generate the so-called selection bias in energy saving estimation 
[DOE 2012]. Allcott, for example, reports a discrepancy of up to 300% between program savings 
estimated using an experimental control group and a matched non-experimental control group [Allcott 
2011].  

When using this matching technique, the main difference between the non-experimental control 
and the experimental groups is that the households in the latter group exhibit desire to enroll in the 
program. The households in the former group may or may not have such enrollment propensity; in light 
of the generally low enrollment rates, it is actually unlikely that these households would have enrolled 
had they been given a chance to enroll (see section Illustrative Example for an example of actual 
enrollment rate). On the other hand, if we could reliably predict the propensity to enroll for a given 
household, we would be able to eliminate the selection bias in constructing the non-experimental control 
groups by selecting only households that are likely to enroll. Therefore, prediction of household 
propensity to enroll is important for both reduction of the recruitment costs and construction of valid 
non-experimental control groups.  

Application of a propensity estimation method commonly used in social science [Caliendo & 
Kopeinig 2008] to predict enrollment in opt-in behavioral energy efficiency programs is not 
straightforward. This is because it is unclear which socio-economic variables can be used as predictors 
and what the underlying causation would be. To the best of our knowledge, the only published work in 
this field is a paper by Harding and Hsiaw on evaluation of a behavior based opt-in energy efficiency 
program in Northern Illinois with a non-experimental control group [Harding & Hsiaw 2014]. Harding 
and Hsiaw attempted to predict household enrollment using household data, enrollment results (enrolled 
or not) and logistic regression. Even though Harding and Hsiaw used potentially strong predictor 
variables such as “environmental issues” (i.e., magazine subscriptions and/or mail response indicating 
household’s interest in environmental or wildlife issues) and “green living” (i.e., buying green 
household cleaning products, eating organic foods, donating funds to environmental causes, or driving 
hybrid vehicles), their goodness of fit as expressed by (pseudo) R-squared was mere 0.0351. Whereas a 
connection between the pseudo R-squared in logistic regression and the classification accuracy 
(households enrolled versus not enrolled) may not be straightforward, it is clear that the classification 
accuracy of this method is just slightly better than 50%. 

This problem is further exacerbated by unavailability of socio-economic household data to 
utilities and/or program contractors as well as privacy concerns. Harding and Hsiaw [Harding & Hsiaw 
2014] used socio-economic data that included, in addition to the mentioned “environmental issues” and 
“green living,” traditional variables such as age, household income, presence of children, education, 
smoking and gambling habits, dieting, home loan-to-value ratio and presence of department store lines 
of credit. All these variables needed to be purchased [Harding & Hsiaw 2014]. 

In this paper, we describe a new method for prediction of household propensity to enroll in opt-
in behavioral energy efficiency/demand response such programs. This method only requires hourly 
electricity consumption data from households’ smart meters, collected over 6-12 months. With the smart 
meters being massively installed in US residences [Edison 2012], the household interval energy 
consumption data are freely available to some US utilities. Unlike socio-economic variables, household 
interval electricity consumption data cannot be easily used for household identification; thus, this 
method reduces privacy concerns. Finally, this method implements advanced machine learning 

                                                            
1 Table 2 of [Harding & Hsiaw 2014] uses term “R-squared” for the logit model 



algorithms to reach an unprecedented prediction accuracy of about 90%. Given the new application of 
this model we present the findings from one utility, but believe this will be applicable across the nation. 

In the next sections, we give a background on the propensity score matching method of 
constructing non-experimental control groups and explain the method in detail. We also provide a case 
study of an evaluation of a behavior based energy efficiency program and comparative analysis of our 
method and a traditional non-experimental method. The paper concludes with a Summary where we 
discuss various aspects of the method including its implementation. 

 
Propensity Score Estimation Using Hourly Energy Consumption 
 

The propensity score matching (PSM) method constructs a non-experimental control group on 
the basis of the propensity score, i.e., the probability of participating in a program given observed 
characteristics, or covariates [Caliendo & Kopeinig 2008]. Once the probability of participation can be 
estimated, the control group is constructed to closely follow the participation probabilities calculated for 
the treatment group. The probability of participation can be substituted by the underlying index of the 
probability estimation for the propensity score as the latter quantity better differentiates between 
observations in the distribution extremes [Lechner 2000]. In this case, the propensity score is not 
bounded to the interval from 0 to 1. 

As we show in the previous section, socio-economic household variables are difficult to use for 
propensity estimation, partly because they are not strong predictors of enrollment and partly because 
they are usually not freely available to utilities/ cause privacy issues. On the other hand, hourly 
household electricity consumption data, increasingly available to utilities that install residential smart 
meters [Edison 2012], embed significant information about household behaviors. Using electricity 
consumption data obtained at hourly resolution, for example, researchers can deduce the presence of 
major household electric appliances and their operational profiles by applying relatively simple 
disaggregation algorithms [Birt et al. 2012]. Therefore, we assume that the hourly electricity data of 
residential utility customers collected over a prolonged period of time prior to treatment (e.g., one year) 
can be a predictor of the propensity to enroll. 

For the binary treatment, the usual choice of a model for propensity estimation is either a linear 
or a logit probability model [Caliendo & Kopeinig 2008]. Such models are feasible for traditional low-
dimensional socio-econometric covariates, e.g., household income or house floorspace. The sheer size of 
the energy consumption data array of a household (8,760 data points for one year), however, makes 
direct application of the linear/logit models unfeasible.  

The binary treatment problem underlying the propensity score is very close to a binary 
classification problem. Moreover, Heckman et al. [Heckman et al. 1998] used classification accuracy to 
assess goodness of fit of their logit model for propensity to enroll. Therefore, instead of using a 
probability model, we use a binary classification scheme to infer the propensity score. 

This patent-pending method is explained in detail elsewhere [Zeifman 2014a], [Zeifman 2014b]. 
Briefly, a nonlinear machine learning (NML) algorithm maps a time series of a household hourly data 
onto a pair of numbers, or scores. The first score in the pair indicates the score for class one (enrolled 
households), while the second score indicates the score for class two (not enrolled households). For 
either class, we want the NML algorithm to yield the score as close to unity as possible in case of the 
data array belonging to this class, and as close to zero as possible otherwise. To this end, we use data 
from the enrolled and unenrolled households for algorithm training, i.e., fitting to the data. Figure 1 
illustrates this principle. Once the algorithm is trained, it can be used for household classification: the 
class with the higher score wins. 
 



 
Figure 1. NML algorithm calculates two scores for hour-resolution electricity data from a household.  

 
Note that term “training,” which is usually used in the machine learning community, means 

estimation of the parameters of the underlying classification method using experimental data. In our case 
we estimate a matrix of weights that maps a 8,760x1 household electricity consumption data array onto 
the two numeric scores. In this sense, the conventional PSM methods also use training since the 
parameters need to be estimated using the socio-economic independent variables and the binary 
enrollment outcome as the dependent variable. 

To illustrate how the method works, we consider a case study next. 
 

Illustrative Example 
 
In 2012, a major West Coast Utility Company partnered with a private contractor to launch a 

new opt-in behavior-based residential energy efficiency program2. Participants were recruited by several 
channels, including local educational institutes, social media, and news advertisement. The participants 
could control their electricity usage by monitoring their hourly electricity consumption data. Significant 
awards were offered for energy savings to the participating households. 

To be eligible for this Program, residential customers must reside within a specific geographic 
area (section of a major city). Out of approximately 470,000 eligible customers, about 5,600 customers 
enrolled between June 2012 and September 2012. 

We received information on about 5,600 households that enrolled in the Program and on about 
32,000 households located outside the Program area but still within the same city and micro climate 
zone(s). This information included: 

• Household electricity consumption with hourly resolution for a minimum of twelve 
months before the program started (i.e., on June 1, 2011 or earlier); 

• Household zip code. 
Due to strict utility regulations, no personal information accompanied the household data. 

There are no statistically significant differences between the two household populations in terms 
of characteristics available to us. The average hourly energy consumption of the 5,600 enrolled 
households during the pre-program period was 0.5957 kWh and the standard deviation of this average 
was 0.012 kWh. The average hourly energy consumption of the 32,000 not-enrolled households during 
the pre-program period was 0.6126 kWh and the standard deviation of the average was 0.007 kWh. 
Therefore, the difference between the average energy consumptions of these two large samples is within 
two standard deviations, i.e., statistically insignificant.  

                                                            
2 Our research agreement prevents us from publishing the contractor name. The contractor requested us to keep the utility 
name confidential. 
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Also, we assessed whether any observed differences could be attributed to differences in socio-
economic population parameters. For example, if the enrolled households were located in a wealthy 
neighborhood and the not-enrolled households were located in a poor neighborhood, the latent 
differences in energy consumption could be attributed to the differences in those socio-economic 
population parameters. We used the US Census data to assess potential differences within and between 
the enrolled and not-enrolled populations. We studied parameters such as median age, fraction of family 
households, average family size, and median household income for the zip codes related to the two 
populations. We found no statistically significant difference between these parameters in the two 
populations. 
 
Training and testing. In the mentioned papers on propensity score matching [Heckman et al. 1998], 
[Harding & Hsiaw 2014], the goodness of prediction was evaluated by the same experimental data that 
were used in fitting the model. In other words, the same data were used for both training and testing.  

Using the same data sets for training and testing may lead to the overfitting problem [Dietterich 
2000]. The goodness of fit would be unrealistically high for the data sets used but could be much lower 
for new data. Accordingly, we decided to use different samples for training and testing of our NML 
algorithm. To this end, we selected at random a sample of 2,000 enrolled households (out of 5,600 total) 
and a sample of 2,000 not enrolled households3 (out of 32,000 total) for algorithm training. To test the 
classification performance, we selected at random a different sample of 2,000 enrolled households (out 
of 5,600 – 2,000 = 3,600 total) and a different sample of the not enrolled households (out of 32,000 – 
2,000 = 30,000). Each of the four samples comprised 2,000 data arrays, each array being pre-treatment 
hourly electricity consumption of a household (i.e., 8,760 data points collected by Utility from June 1, 
2011 to May 31, 2012). 

As discussed earlier, and illustrated in Figure 1, in training, we need to estimate parameters of 
the NML algorithm (matrix of weights – [Zeifman 2014a]) by fitting simultaneously: 

- the enrollment score - to be as close to unity as possible for the enrolled households 
- the enrollment score - to be as close to zero as possible for the not-enrolled households 
- the not-enrollment score - to be as close to zero as possible for the enrolled households 
- the not-enrollment score - to be as close to unity as possible for the not-enrolled households. 
In testing, we apply the trained algorithm to new data to calculate how many households were 

classified correctly. To provide fair comparison to the conventional PSM method, we also used for 
testing the samples that were used for training. The results are listed in Table 1. 

As we can see in the table, our NML algorithm actually performs better than the logistic 
regression in the social PSM application: Heckman et al. report 81.89% of enrollment prediction 
accuracy and 81.96% of not-enrollment prediction accuracy using the same pair of samples for training 
and testing [Heckman et al. 1998]. The performance of NML algorithm slightly deteriorates if different 
samples are used for training and testing, but the accuracy still remains above 90%. One interesting 
observation in Table 1 is that the fraction of enrolled households classified as enrolled is about 9%, 
which is very close to the average enrollment rate of 11% reported in [DOE 2013]. Does this mean that 
the enrollment rate in the particular opt-in behavior-based energy efficiency program considered could 
be higher if better advertisement were used?  

 
 

                                                            
3 Actually, these households are not-treatment households as they did not get a chance to enroll but given the very low 
enrollment rate (1.2%), we can safely use these households as those not enrolled. We hope that the reader, unlike us, will be 
given data of the eligible not enrolled households. 



Table 1.  Classification results of NML algorithm based on hourly household electricity consumption 
data from the pre-treatment period. 
 
 Random sample 

of enrolled 
households, used 
for training 
(n = 2,000) 

Different random 
sample of 
enrolled 
households, used 
for testing 
(n = 2,000) 

Random sample 
of not-enrolled 
households, used 
for training 
(n = 2,000) 

Different random 
sample of not-
enrolled 
households, used 
for testing 
(n = 2,000) 

Classified as 
enrolled 

1,848 (92.4%) 1,825 (91.2%) 166 (8.3%) 191 (9.6%) 

Classified as not 
enrolled 

152 (7.6%) 175 (8.8%) 1,834 (91.7%) 1,809 (90.4%) 

 
To further test the prediction accuracy of our method, we performed multiple cross validations 

using random sub-sampling. In this setting, we repeated the above-described process 1,000 times, 
drawing at random non-overlapping samples of 2,000 households for training and testing [Zeifman 
2014a]. The results demonstrated accuracy levels exceeding 90% with 95% confidence intervals ranging 
from ±1.1% to ±1.4 %. 
 
Distribution of propensity score. Unlike the conventional PSM methods, our approach yields two 
scores for each household data set: score 1 for enrollment and score 2 for not enrollment. The enrollment 
score is related to the enrollment probability, and the not-enrollment score is related to the probability to 
not enroll. If the suggested scores are good metrics of tendency to enroll/not enroll, their corresponding 
distributions for the training and testing datasets should not differ statistically. 
 Figure 2 shows empirical cumulative distribution functions (CDFs) calculated for the two scores 
and two non-overlapping samples from the case study: a sample of enrolled households used for training 
and a sample of enrolled households used for testing. It is seen in the Figure that the distribution 
functions of the two samples practically coincide for each of the score. Quantitatively, a Kolmogorov-
Smirnov test can be applied to test a statistical hypothesis that the distribution functions are equal. We 
have conducted this test using the empirical distribution functions; the result is that the null hypothesis is 
not rejected with p-values of 0.41 and 0.43 for the enrollment and not enrollment scores, respectively. 
Similar results were obtained for samples of not enrolled households. 
 

Overlap and common support. The common support or overlap condition is an important 
requirement to a propensity score model [Caliendo & Kopeinig, 2008]. It ensures that persons (or 
households in our case) with the same set of covariate values have a positive probability of being both 
participants and non-participants. In fact, the selection bias, observed by Heckman et al. [Heckman et al. 
1998] for a propensity-matched non experimental control group, can be attributed to the lack of overlap 
between the distributions of enrollment probability of the enrolled and not enrolled samples [Lechner 
2000].To follow this reasoning, we need to check overlap of the distributions of the enrollment score for 
the enrolled and not enrolled samples. Also, since we use the difference between the enrollment and not 
enrollment scores to classify a household, we also need to check overlap between the corresponding 
distributions of the score differences.  

Figure 3 shows histograms of these quantities. Unlike the enrollment probabilities, our scores are 
not bounded in the interval from zero to unity, consequently, the distributions have typical unimodal 
shape [Lechner 2000] (The distribution of participation probability by Heckman et al. was bimodal with 
peaks near the distribution extremes, i.e., near zero and unity [Heckman et al. 1998]). The overlap is 



clearly seen for both the enrollment score and the difference between enrollment and not enrollment 
scores.  
 

Figure 2. Empirical cumulative distribution functions of propensity score for enrollment (left) and not 
enrollment (right) of two different random samples (training and testing) of enrolled households. Size of 
each group is 2,000 households. 
 

Figure 3. Enrollment score (left) and difference between enrollment and not enrollment scores for a 
sample of 2,000 enrolled households and a sample of 2,000 of not enrolled households 
 
Construction of Non-Experimental Control Groups and Evaluation of Program 
Effect 
 

We used the developed methodology to construct a non-experimental control group by PSM. For 
the sake of comparison, we also built a “conventional” non-experimental control group by matching 
household electricity consumption. 
 
PSM Control Group Construction 
 

Once the propensity score model has been fitted to experimental data, the next step in building a 
PSM control group is to calculate propensity scores of the enrolled and not-enrolled households. After 
the scores are available, an established matching method, e.g., the nearest neighbor matching or the 
stratification and interval sampling [Caliendo & Kopeing 2008] can be used. With only 32,000 non-



treatment households available and with the average fraction of about 9% of the non-treatment 
households that are likely to enroll (See Table 1), the prospective control group size can be estimated as 
32,000*0.09 = 2,880, i.e., about a half of the treatment group size. Further, if we augment propensity 
score matching by matching with observable variables (i.e., electricity consumption before treatment in 
our case), the resultant control group would be even smaller. Our experimentation with such augmented 
nearest neighbor matching method resulted in a control group with only 245 households. This size 
discrepancy between a treatment and control groups lends one-by-one matching less reliable, since a 
household from a control group is matched to more than twenty treatment households on average4. 
Accordingly, we resorted to the interval sampling method [Caliendo & Kopeing 2008].  

In the interval sampling method, the entire range of the propensity scores for class “enrolled” is 
divided into equal-probability intervals and the frequencies within each interval are calculated using the 
scores from the enrolled group. The control group is constructed from the non-treatment households 
using their calculated propensity score by matching their relative interval frequencies. The final PSM 
group included 2,586 households. In this method, we did not augment matching by propensity score 
with matching by the energy consumption either, because of the relatively small size of the candidate 
household pool. 

We used our first score, i.e., the enrollment score, to construct the control group. Since we use 
the difference between the enrollment and not enrollment scores for classification, we also constructed a 
control group by matching the score differences. The resultant control group included 2,618 households 
of which 2,495 (96.5%) were also in the previous group. Due to this smallness of group difference and 
because the conventional PSM method operates with enrollment score, we decided to use the former 
group of 2,586 households as a PSM control group.  
 
Energy Matched Control Group Construction 
 

Due to popularity of non-experimental control group constructed by energy consumption 
matching [Allcott 2011], we decided to implement matching by energy consumption in the pre-treatment 
period to construct an alternative control group. We implemented a technique close to the M-nearest 
neighbor with replacement [Caliendo & Kopeing 2008] to construct the sample.  

For each enrolled household, we selected M = 2 not-treatment households such that their squared 
Euclidian distance (integrated square difference in electricity consumption) is minimal over the pre-
treatment year: 

( ) min
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In Equation (1), Yi,t is electricity consumption of enrolled household i during hour t and Zj,t is electricity 
consumption of not-treatment household j during the same hour. We applied a computational scheme 
based on Equation (1) to the 5,600 enrolled households and 32,000 non-treatment households. The 
resultant EM control group size was 2,300 households.  
 
Observations from Non-Experimental Control Groups 

 
In a separate paper [Zeifman 2014a], we studied possible dependence between the calculated 

household propensity score and average electricity consumption. We concluded that there were no 
dependence between the propensity score and household average electricity consumption. Accordingly, 
                                                            
4 Note that we were given a small pool of candidate not-treatment households (32,000 as compared to 470,000 Program-
eligible households). With an adequate candidate pool size, the nearest neighbor method can be implemented. 



we did not expect the interval-based PSM control group, which was not augmented with matching by 
observables, to automatically match the treatment group by energy consumption. Indeed, while the 
average hourly electricity consumption of the treatment group (i.e., the enrolled households) over the 
pre-treatment year was 0.5957 kWh, that value for the PSM group was 0.7677 kWh, and for the EM 
group it was 0.5999 kWh.  

Figure 4. Hourly electricity consumption data for September 21-23, 2011, averaged over groups. 
 

Since the average values differ considerably between the treatment group and the PSM control 
group, we can hypothesize that it is the details of electricity consumption that are related to the 
household propensity to enroll. Figure 4 partially supports this hypothesis. It can be observed in the 
Figure that the PSM group, though consuming more energy, somewhat better follows the patterns of the 
treatment group than the EM group. On the other hand, such a pattern does not always persist, so that it 
is difficult to argue what visible features are responsible for the household propensity to enroll. The 
nonlinearity of the selected NML algorithm implies that such features may not be directly observable. 

Does the fact that the PSM control group consumes considerably more electricity than the 
treatment group invalidate it? First, had we been given a reasonably large pool of non-treatment 
households, (i.e., as large as the pool of the eligible households), we would have built a control group 
matched to the treatment group by both propensity to enroll and observable variables (see section PSM 
Control Group Construction). Second, it is possible to model different levels of energy consumption of 
the treatment and control groups in evaluation. We will explore this possibility in the next Section. Last, 
the main objective of this paper is to provide means to pinpoint households that are likely to enroll in 
behavior-based energy efficiency programs. For this objective, the difference in energy consumption is 
irrelevant. 
 
Program Effect Estimation 
 

In this Section, we give a brief example of the control group use for saving estimation along with 
limited results. To estimate the overall program saving effect and account for the discrepancy in 
electricity consumption of the treatment and PSM control group, we applied a panel data model with 
fixed effects [Braithwait, Hansen & Armstrong 2012] and used bootstrap-type simulations to estimate 
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the saving confidence interval. To this end, in each simulation we select at random 400 households from 
a treatment group and 400 from a control group, and estimate the saving. We then repeat this process to 
obtain a statistical sample. 

Figure 5 shows the distribution of saving percentage. For the PSM control group, the average 
saving is 4.94%, and the 90% confidence interval is [3.58% to 6.47%]. For the EM control group, the 
results are statistically different. The average saving is 1.69% with 90% confidence interval [-0.31% 
4.10%], i.e., the saving is statistically insignificant at 5% significance level. These results also suggest 
that the distribution of saving percentage based on EM control group is approximately 50% wider than 
that based on the PSM group. This observation, together with the heavy tails of the EM-based 
distribution, are in line with Allcott’s observations of very high variability of saving estimates calculated 
using the energy matched control groups [Allcott 2011].  
 

Figure 5. Distribution of saving percentage estimated by Equation (2) from 100 bootstrap simulations. 
Left: PSM control group used, Right: EM control group used. 
 
Suggested Implementation 
 
To use the proposed method for either non-experimental control group construction or identifying the 
households that are likely to enroll in an opt-in behavior based energy efficiency/demand response 
program5, we suggest the following steps.  

1. Obtain a sample of about a thousand households that enrolled in a current or past opt-in behavior 
based energy efficiency program. The sample needs to include interval electricity consumption 
data of each household collected over the same pre-treatment time window of at least one year. 

2. Obtain a sample of about a thousand eligible for enrollment households that did not enroll in the 
same program, along with their interval data for the same period of time.  

3. Train the algorithm using these two datasets. Although the algorithm seems to be complicated, 
its training can be performed by a “push button” in Excel worksheet and requires few seconds of 
computational time on a Windows machine. Estimate the goodness-of-fit by applying the 
algorithm to classification of households (likely or unlikely to enroll) and comparing the 
classification results with the actual enrollment data. 

4. Obtain a pool of candidate households. These candidate households need to be as similar as 
possible to the households used for algorithm training in terms of geographic location and 

                                                            
5 Whether the households that are likely to enroll in such programs are also likely to enroll in other energy efficiency 
programs, e.g., those that require home retrofits, is an open question that we need to address in future. 
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household type (e.g., detached homes or multifamily) and have the interval data available for the 
same period of time. The size of this pool is roughly ten times the desired prediction sample size 
or larger. 

5. Using the trained algorithm and the interval data from the pool, calculate which candidate 
households are likely to enroll. In our case study, this prediction is another “push button” 
computer operation that requires few seconds of computational time for the pool size of 32,000. 

 
Summary 
 

We developed an easy-to-implement method for prediction of household propensity to enroll in 
an opt-in behavior based energy efficiency program using only information freely available to utilities. 
The method requires interval electricity consumption data collected over a year for a sample of 1,000-
2,000 households that have enrolled in an opt-in behavior based energy efficiency program and a similar 
data set of households that have not enrolled. Once the main algorithm is fitted to these data, it can be 
used for enrollment prediction and/or quantitative characterization of propensity to enroll using the 
interval electricity data of other households. The prediction accuracy of our method, verified by using 
separate samples for algorithm fitting and for prediction, is shown to be about 90%. 

It is known that matching by observable variables only in non-experimental control group 
construction does not eliminate the selection bias. Since such matching is not perfect, we deduce that the 
households with high propensity to enroll have specific energy spending patterns, which are lost in 
simple energy matching. Even though our method uses these patterns indirectly, they are still not 
directly observable even in the interval electricity consumption data.  

One interesting finding of our case study is that the fraction of households with high calculated 
propensity to enroll can be as high as 9.6% whereas the actual rate of successfully recruited participants 
was only 1.2%. Since the predicted enrollment rate is in line with the average enrollment rate of 11% in 
several US opt-in behavior based energy efficiency programs [DOE 2013], we believe that our 
prediction of households that are likely to enroll is correct. Therefore, the actual enrollment rate could 
have been increased sevenfold, had the underlying Program used better advertisement. We have not 
attempted to experiment with better advertisement, however. 

The proposed method is new, and there are numerous questions that need to be researched. For 
example, our method worked well for a given region/program. Will its performance be as good for a 
different region or program? Can the enrollment data from one program be used as a proxy for another 
program in the same region? Can our algorithm, trained on data from one region, be applied to data from 
another region? What are the requirements to the region (e.g., size, homogeneity)? Additional research 
work is needed to answer these questions. 
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